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THE DETERMINATION OF CRITICAL FLUTTER CONDITIONS OF NONLINEAR SYSTEMS

by

D. L. Woodcock

SUMMARY

A flutter analysis procedure for nonlinear systems is proposed as an

alternative to timewise integration methods. It is based on an energy method due

to J. Roorda and S. Nemat-Nasser; and shows promise of being a practical pro-

cedure provided the number of parameters can be minimised by the representation

of the flutter system by an equivalent (condensed) two degree of freedom system

in the neighbourhood of the critical condition. The relationship to the simpler

method put forward by R.F. Taylor et alia is considered.
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INTRODUCTION

The theoretical prediction of flutter characteristics can normally be treated

adequately as a linear, small perturbation, problem. However there may be circumstances

where a nonlinear analysis is essential. This may sometimes be the case, for example,

in transonic flow conditions. One obvious method that could be used would be to determine

by numerical, timewise, integration the motion consequent upon a number of initial dis-

turbances. So by interpolation one should be able to determine possible states of

periodic motion. Alternatively one can attempt to determine directly such limit cycles.

This present paper is, therefore, an initial consideration of how this might be done.

An approximate method, with two possible simplifications, is suggested.

2 THE BASIC RELATIONSHIPS

Suppose we have an aeroelastic system where Lagrange equation of motion can be

approximated sufficiently well, for the purpose of finding periodic solutions, by the

nonlinear matrix differential equation:-

Av 2q11 + (By +Dv q1 + (C + L q

+ f(q,vq') + 1- g(q,vvq') - 0 . (2-1)
v2

Here A is the inertia matrix, B and D the linear aerodynamic and structural damping

matrices respectively, C and the linear aerodynamic and structural stiffness

matrices respectively, f is a column vector of the nonlinear aerodynamic terms, and

g is a column vector of the nonlinear structural terms. A non-dimensional time T (= wt)

has been introduced where w is an, as yet, undetermined frequency. The frequency

parameter based on this frequency, the airspeed and a chosen reference length is

denoted by v . The primes denote differentiation with respect to T . v is an

airspeed parameter, being the ratio of the airspeed to some reference speed. The

matrices A and E will both be symmetric and positive definite, but the other square

matrices (B, C and D) have no special properties. When desired we will divide them into

symmetric and skew-symmetric parts denoted respectively by the subscripts s and a.

We wish to find a relationship between the amplitude of steady state oscillations

and the speed parameter v, and also to determine whether the steady state oscillations

are stable. Of course, one may wish to vary another parameter rather than v but the

procedure should be basically similar to that which we will describe. It is not to be

expected that steady state oscillations will be possible at all values of v . The i

method to be described is an application of that proposed by Roorda and Nemat-Nasser

The rather simpler approach suggested by Taylor, Bogner and Stanley , which is a

generalisation to a multi-degree of freedom system of the text book energy-balance method

(see eg Ref 3, p 100), will appear as a by-product.
a,

Let us assue the equation (2-1) has a periodic solution and let the parameter wF ~ which we have introduced, but not specified, be the frequency of this motion. We will,



as an approximation to the solution, take

q = ap(x,T) (2-2)

where a is an amplitude parameter, and x is a column vector of parameters x. (i f-fm)
1which are to be determined so that (2-2) is close to the true solution. p will thus be

periodic of period 2w and in particular

p(x,O) = p(x,2w) .(2-3)

The existence of a steady state solution implies that no energy is accumulated or

dissipated over a complete cycle. This means, writing the left-hand side of (2-I) as

y(q,q',q") , that our assumed solution must satisfy

2 71 f p'(XT)Ty(apap,'ap")d = 0 . (2-4)

0

The matrices A , E and C since they are symmetric, and the matrices B and Ds a a
since they are skew-symmetric, will make no contribution to this integral. Equatio, (2-4)

can therefore be rewritten

21

x(CL,v,v,x) J I'(x,.)lBv+ Ds 2t) apI + C ap Opvl + -.L g(ctp,vvup') dr = 0
0 ...... (2-5)

where we have assumed a is not zero.

To obtain further useful relationships we turn to Hamilton's principle which

states that the virtual work done by the generalised forces during any admissible virtual

displacements over an arbitrary period of time must be zero. Now the elements of y are

the generalised forces, since (2-I) is the equation of those forces to zero, and so

T 2

f ,ap")dT= 0 . (2-6)

But from (2-2) we can write Sq in terms of arbitrary variations of the elements of x

and of the frequency w . Thus, remembering that dT/dw = t - T/W

rt

rr p'(XT)6w+ 27)
wx 1 2
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Consequently, since 6w and Sx are arbitrary, and taking the time interval ( -2
)

to be a complete cycle, we have the set of equations

I {p'(x,T)ITy(ap,ap,p")TdT = 0 (2-8)

and

2ir

7=i ~p a la " d 0 i =I +m .(2-9)

0

We have here assumed that a/w , as well as a , is not zero.

The above equations (2-5), (2-8) and (2-9) provide a means of determining all but

one of the unknowns a, v, v, x in terms of the remaining one - say determine v,v

and the xi  in terms of the amplitude parameter a . The accuracy of the approximate

solution will depend on how adequately the assumed form for the mode of displacement

2
p(x,r) can represent the true solution. The method of imposed disturbances (or energy-

balance method (Ref 3, p 100)) uses just equation (2-5); the only unknown allowed in the

assumed displacement is the amplitude parameter a , the frequency and displacement mode

being determined from the limiting (linear) case when a - 0 . An alternative simplifi-

cation would be to just use equations (2-5) and (2-8) and so determine say the frequency

and speed parameters in terms of the amplitude parameter. However, as the example of

section 2.1 shows, it is questionable whether this would yield any improvement over just

using (2-5), though it does avoid the assumption that the frequency is unchanged from

the linear case.

Before further consideration of how this suggested method could be implemented we

will in the next section consider a very simple example in order to get a feel for what

is involved. )

2.1 A simple, one degree of freedom, example

Consider the equation

2, cV 2 _
vx, + - (x -v)x' + 0 (2-10)

v 2 0
v

This represents a one degree of freedom system in which the structural damping is the

nonlinear term cvx2 x'/v , and the only aerodynamic term is the damping (-evx') . By

a change of variables this can be transformed into the standard van der Pol equation

Go + U(2 1) A- + - 0 (2-11)

a, cn2  dndn
2

and so we see (of Ref 3, pp 102-106) that, for c small, equation (2-10) has a limit

cycle solution
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x - cos T + 0(C) (2-12)

with
1 €2

V -+ 0(C ) * (2-13)V

Note that the solution of van der Pol's equation transformed to our variables gives

x=2VCOS + 0Cc 2  0 (C) , but our choice of w as the frequency of the periodic
solution means that the period in T is 2w and so we obtain (2-13).

Now if we neglect the nonlinear term in (2-10) we find that the only periodic

solution occurs when v = 0 and vv is finite and is (a is arbitrary)

x = a cos() . (2-14)

With the proviso about w this becomes

x a a cos T (2-15)

with

f (2-16)v

We will therefore use equation (2-15) as the trial solution, corresponding to

equation (2-2), for the methods proposed in section 2 when either just equation (2-5) or

equations (2-5) and (2-8) are used. Equation (2-5) is

2-
-e- (2COS2 T - V) sin 2

T dT 0 (2-17)

0

which gives

a 2 (2-18)

In addition for this system equation (2-8) becomes

21r

cost - (a cos T - v) sint +T C T sinTdt = 0 (2-19)
0 V

and so
a -I v-) +  

0 
(2-20)

The solution of this equation is

0%

V -+ + 0(c 2 (2-21)V v
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which combined with (2-18) gives

- 0(2) . (2-22)
v

Thus, in either case the solution thus obtained has an error 0(c) in x and one of

0(c 2) in v (cf equations(2-12) and (2-13); for, when only (2-5) used, v is assumed

to be given by the linear solution (2-16).

Making use also of (2-8) avoids the assumption that the frequency is unchanged from

the linear case, but otherwise produces no improvement and it is obvious that this must

be a consequence of the trial solution (2-15) being too crude.

To obtain a more accurate solution we take as a trial solution equation (2-15)

with the addition of a third harmonic, ie

x . Ci{cos T + X cos 3T + X sin 3T} - p. (2-23)

This yields, omitting second order terms in x and x2

1 2
p' sin T - 3x I sin 3T + 3x 2 cos 3T (2-24)

and

y(app[ap") - v2) cos T vsin ( 2 -

+ x1 v2) co 3T 5(2 sin T COS T Cos 3T + 3(a2 C - v) sin31

+ x2 - 9) sin 3T 2 sin T cos T sin 3T - 3(a2 COS - v)cos 3

...... (2-25)

Thus we obtain from equations (2-5), (2-8) and (2-9) to the same order of accuracy

fj sin 2 T a2COg 2 - V) + X,12 sin 2 T coon T cog 3T + 6 sin T sin 3T (a 2 CS2 -
2 2

o0..(2
ain
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2w

2/in COS T 7 Bv-inT(a
2 

COS -V
0

+ x (L .9,)2) si T cos 3T + 3( v 2) COS T sin 3T

S 2in T COS T Cos 3T + 6 sin T sin 3T (a 2 cos T- v))

+ x 2 h -9v2) sin T sin 3T - 3( -v2) cos T cos 3T

E( 2 sin 2 T C sin 3 - 6 sin T cos3T (2 COST - V ))]TdT 0. (2-27)Av
27r

- Cos T Cos 3T - L- sin T Cos 3T (a2 2

( 9 2) 23 - V (2 sin T
2  2 CO 2  

T V) sin 3T c os Co s TCO T -- v 3T)
vv

+
2 
x y-I - 9 v2)o23 sin osT CO23T +( COS COB )sn T os3

-3(ai COB T - V) COS2 3 T dT = 0 (2-28)

and

21r
-2)T T -

0

+ xI  2)9v sin 3T cos 3T -L- 2 sin T COS T sin 3T COs 3T

+ 3(a2 COS 2 
T- v) sin23)

+ 2 1 9 sin23 - (2 sin T COS T Sin3T

2 os2 V2) -

-3(a2 2O )sn3 o 3TJ dT -0 (2-29)
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Performing the integrations we get respectively

2 " 0 (2-30)

- - - - - * - 2 - T = 0

...................................................(2-31)

and
cvci2 3 v( - )X + (. -9V2)X =~f 0 .(2-33)

* The solution of these equations is

v ) +0( 3) (2-34)

x2 --3-2" (2-35)
32

(L 32)4(3 2  
- 3) 2 - (2-3+).v T + 128 +L0( 3)

( 4 2 2 ct 44 -
v 9 - 64) +  + 0( ) (2-37)

and so from (2-23)

32
-cos T--- sin3r+0() . (2-38)

Comparing with the known solution (eg HcLachlan4, p 45) it is easily seen* that we have

now got a solution whose error in both x and v is of ).

3 TUE METHOD OF IMPOSED DISTURBANCES (ALIAS ENERGY BALANCE)

~When only equation (2-5) is used we take in the trial solution (2-2)

I:p(x,T) - cos t - n sin r (3-1)

0

* Probably the easiest w )to do th is to put v = and then, from (2-36),
2 - 41l- ¢2•I .. , ecefceto in the expres.ion for v

veudn 23 2is (9 3/.jcor 3m 1) e o ecc 3 au )f (2-36))
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where ( + in) is the right hand eigenvector satisfying

Av + i(B+ i V + ( + ( + in) = 0 (3-2)

in the critical state when v and v are real. Thus v,, vz and ( + in) are

obtained by the solution of the normal linear flutter problem. Two elements, all told,

in C and n will be arbitrary. We also assume that the frequency in the nonlinea:

case is the same as in the linear case, ie we take

Vv = v (3-3)

Other assumptions could be made but in the absence of any strong evidence the above

seems a reasonable choice. Substituting from (3-l)and (3-3) in (2-5) and integrating

the linear terms, then gives the following equation relating the amplitude a of

maintained oscillations with the speed parameter v

aTv~,[T- B + -L. Ds)~ + nT (I Bs + -L D)T + 2 TCa

2T TT 
avX( T sin T + n cos T) f COS T - n sin T), -(- sin T COS T

0

+ 9- ga( cos T - n sin T), aVvv sin T - n cosT d] .

...... (3-4)

Alternatively it could have been written as an equation connecting a and the frequency

parameter v If the nonlinear aerodynamic and structural terms, f and g , can be

evaluated numerically with little difficulty - one might, for example, have an analytical

approximation to g deduced from resonance tests - then the solution of (3-4) should be

no problem. However, one may obtain f or g by a timewise integration procedure.

Thus one would have to assume values of a and v (or equivalently v), evaluate the

right hand side of (3-4) and then compare it with the left, and then repeat for other

(a,v) until one had got equality. In such a case a scalar parameter could be put on,

say, D (the symmetric part of the structural damping matrix) and the results inter-

preted as values of this parameter as a function of a and v . The curve in the (a,v)

plane where the parameter was unity would then indicate the critical states - the

limit cycles. 10

0o



m--

3.1 Energy balance with frequency 
determination

In this section we consider in more detail the use of (2-8) along with (2-5). In

the trial solution p(x,T) is again taken to be given by equations (3-I) and (3-2). The

assumption (3-3) is, however, no longer needed. Thus (2-5) gives

a svJT(Bs + I Ds)' + vrITs(B +-- D n + 2 TCn

27
TT j1 x

T sin T + n cos T)I fE( cos T - n sin r), av(-E sin T - n cos T v

0 
2

X cos T - n~ sin r),cxvv(-~ sin T - qrCO c T )fdT (3-5)

while from (2-8) we have

7( C Irv [B + D Yl + JT 2 s Ds+ Z s- )

+ T(2 [B + I D] [C + E v2A])I

27r

f (ET sin T + nT cos -)f i( cos T - n sin ), av(- sin T - n cos T

0

+ -L ga(t COS T - n sin -0, avv(-E sin T - n cos T TdT

v2

...... (3-6)

These two equations are particularly convenient in the case when the linear structural

damping (or indeed just the symmetrical part of the linear structural damping matrix)

is zero and there is no structural nonlinearity. It is common practice to assume no

structural damping and rely on what there is present in practice for an extra little bit

of safety margin*. In this particular case D and g will be zero therefore. The

first equation (3-5), which then becomes

,,((&TBs+ nT Bs) + 2 & TC an)

21r

f T sin T + nT cos T)f ( cos T - n sin ),av(-E sin - n cos T)] dr (3-7)

0

00

can be solved, on the lines discussed in section 3, for v as a function of a

* The addition of structural damping does not, however, necessarily make a system more

stable.
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The speed parameter v is then immediatel- evaluated from equation (3-6) which in this

particular case gives

T (T(v2A C 2iv -T(v
2 A + 2vB- C rn

v 2 (E EE - nTEn) A-2,BS J 7 )

21
+-- ( T sin T + nT cos T)f (6 cos - n sin T),0

av(- sin T - n cos T)]d . (3-8)

When the only nonlinearity is structural the solution is in one sense rather more
difficult. We can eliminate v between the two equations, (3-5) and (3-6), and obtain

an equation connecting a and vv . Thus writing the following four constants as

T T
k I  E BsE + nTBsn (3-9)

T~s T s T

k2 E s + rTB &- T Bsn (3-10)

c1  = 2ECn (3-TC)

c = 2 ETCa n + I Tcs - Tc} (3-12)

and also using the notation

21

g1(ri,vv) 1 ( T sin T + n T cos T)g&(C cos T - n sin T),
a(Vv) 7 0

avv(- E sin T - n cos T)dT

- E ( DsE + Trs) (3-13)

92 (aVv) = 2 2 (EsinT + n cos T)g ( Ect cos T - n sin T),
a(vv) 7r 0

avv(- sin T - n cos T)]Tdt

- (C (7EE ) D + TD T ETD + T T
22?rN Vv S 7 T 2w (&At n n

...... (3-14)

*0
we obtain the relationship

(Clk 2 - C2k)k 2 gl(a,vv) - klg 2 (avv) = Ic2g(aVv) - C g2(a,vv) 
2

. (3-15)
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Having solved this equation for vv as a function of a one can then return to

equation (3-5) or (3-6) to determine v and hence v . In this case (no aerodynamic

nonlinearity), with the notation introduced in equations (3-9) to (3-14), they become

V g I(a,vv) - vk I  c I  0 (3-16)

Vg 2(,vv) - vk2 - c 2  0 . (3-17)

4 THE FULL PROPOSAL

Our full proposal involving the use of equations (2-5), (2-8) and (2-9) permits

the introduction of some unknown parameters xr - the elements of x - in the mode

p(x,T) of the trial solution (2-2). In the one degree of freedom example considered in

section (2-I) these were taken to be coefficients of harmonics higher than the funda-

mental (cf equation (2-23). For the multi-degree of freedom system there is more choice.

One could alternatively allow variation in the relative values of the elements of
*p(x,T) rather than introduce higher harmonics, or perhaps use some mixture of the two

ideas.

Baldock 5'6 has demonstrated how one can often find an equivalent two degree of

freedom system which will represent the behaviour of a system with many more degrees of

freedom with good accuracy at or in the vicinity of the flutter condition. Let the

modes of these two degrees of freedom be represented in terms of the original

generalised coordinates by the columnvectors 0 and 6 , and let the flutter mode of

the linear system be

q - (z! + i) + ( + iz2)8 . (4-1)

Then, on the basis of this, it seems reasonable to take as a trial solution for the non-

linear system

q = np(x,T) a [I(z I + x ) + 1cos - + (z 2 + x2)e sin T . (4-2)

Substituting this expression in equatiors(2-5) and (2-8) gives the equations given

in the previous section (3-1) - equations (3-5) and (3-6) in the general case - with

{ - (z) + x 1 )0 + e (4-3)

0 + (z2 + x2)8 • (4-4)

Of course, we only wish to retain first order terms in xI and x2 , and so writing

o= &x W O (4-5)

no - x2 =-O (4-6)
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f0 (a,v,T) . f 0( 0 COS T - n0 sin T),av(- 0 sin T - n0 COS T] (4-7)

and
g g0(C, Vv, T) = g ( O cos T - n o sin T),aVV(- sin T - n cos T (4-8)

equation (3-5) becomes

aIT (B I D)o+vT B + I v D- j

r~~B L + ns )no + 2Cn + 2x, Evc(B + +1 D5) -nC]

+2x [n(B. + I1 DS)e + oc]

0 vO

0 2r

(E1 T sin T 0 c~v +T sin T f (aT CO VT)

0

2wr

+ X [j sin T f0 (CL,v,T) + sin T + n cos T

0

xG(q)(aV,T) a cos T - F a,vT)Q sin T dT

27

CO f s g0 (c,v,) - sin T + nT COS
00

x F, (q) (aooToO s.,n Toq' +,' F , (q)oa(,',  OST
+ J snTg(,VT+ Tsin Tr + nTCO x

0

+ 2 Cer squ seren 0 sin whose jth conu C T

whe respectively ac
4.D
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I DqJ Jq--(&o COS T-no sin T)

{ af(q,vq')l
S q=a(&o cos T-n 0 sin T)

{i vt)q~%~ i )(4-10)

Dg(qvvq')
D qj Iq'a(E

0 COS T-n
0 sin T)

and {ag (g,vvg')}

q] qfa{&0 COS T-B 0 sin T)

q. being the jth element of q . We are assuming that the functions f and g have

a Taylor expansion at this point. Similarly equation (3-6) becomes

n4 2rC - Iv + D + I B + I Ds] + + - V2AD0
a s , \L s)n +1 S, J/CS

0~-I +- -

+ T1 2 W )( + I- DS] -Z [flC + ' E(_Cv A])0 v 22 '2]0

+ X2 [ ( r~ - + 2 D)- 2w 0Ca + ir ( s+ Ev2A)e

= ~sin t + nT cos ){ 0 cvt + -- g 0 c vr~ dT
0 v

+ xI [T sin T f 0 (a,v,'r) + (sin T + ncos 2

x F(qc,v,T)$cs " - (,e,ra sin - 2 d -L

.&T-2cos, f(ct,v,) - sin t + OB 2

0 s F +)(q,v,T)ea n S + (a,v,)0ai cos 4}rdr

+ [T sin Tf ( ,v v,) + & T osin Tr + nT COS

0 X 0F (a,v , )a Cos T - F ( ') (a ,. ,) c sin d
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27r

+- J2 cos T g0 (a,vv,T) T sin T + n cos x

IG0 (a,vv,)0ea sin T + Gcos dT

Furthermore, from equation (2-9), with p(x,T) given by (4-2), we obtain the following

two equations, keeping again only first order terms in x and x

T-)v( .2) no + x, (C. + -~-Av2) x2 B +)]
2 1 v 2

VC vI6

+ ax,{F q)(a,V ,T), co - F~P (av,) sin cos
+ *CLj{q 2 -g(q') (v sin COS

r 0

_G(qx2 2G(q)

- vLX F ( a v,T)8 Csi o C + -F (a, v,t) cos2

and

I (q 22q7

0 2v

+ lF (q) (a,V) sin cos - T F(q') ( ,,) S2T

#{Gq) (,v, ,x )
V sin T COS - G (a,vv,t)* sin2r,

- x 2{Fo
(q ) (a,v,T ) sin2r + Fo(Q(,v,)e sinr, cos 2

S) + si2 G ,vv,r)e sin cor

00

...... ( )4- 3)

+ L•F (,,~ i CST F OV-~ i
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Thus we have four equations, (4-9), (4-11), (4-12) and (4-13), which can be solved for

the four of the five unknowns a, V, v, xI and x2 in terms of the other one. The

equations are linear in the modal parameters x I and x2 but not in the other unknowns.

The solution of these equations should not be as troublesome as it might appear.

Consider first the case when there is no structural damping and no structural non-

linearity (D and g(q,vvq') are both zero). Then all the integrals that appear are

independent of v and so we can assume values of a and v and obtain respectively,

from equations (4-9), (4-11), (4-12) and (4-13), equation of the form

U oxl I + 02x2 + 1 03 = 0 (4-14)

11 v2 11)x, + ('12- 2 Y1 2)x 2 + ('13 - v
2  13 =415

(21 -2-~ 21 jx1 + iP22x2 + (V23 - a2 23) (4-16)

V V

*1 3 1X 1 + (j 32 2 Y3)x + (.33 - -2 0 3(43)

The coefficients Pij will all be functions of a and v . For example

21T

"02 T 2 0Bse + ca - T cos T f (aVT) T sin t + COST

0

X {F~q)(a,v,T)ea sin T - F (ci,v,T)ea cos T}]dT

......(4-18)

The other coefficients, the yij , are constants. An example is

Y32 -7r 8E . (4-19)

The three equations (4-15) to (4-17) form an eigenvalue problem which can be solved
by the usual methods f or a/v2 , x1  and x2 . We require a solution for which all

2
these quantities are real and the first one, (a/v ), is positive. There always will be

at least one real solution. The values of xI and x2 , from suitable solutions of

(4-15) to (4-17), can then be substituted in equation (4-14) to see how closely it is

satisfied. By repeating the procedure for other assumed values of a and v one should

then be able to find the conditions under which all four equations are satisfied; thus

obtaining v, x1 , x2, and v as functions of a for the critical (limit cycle) flutter

condition.

* When the only nonlinearity is structural it is convenient to use a notation which

is an elaboration of that used in that section 3.1 (see Table I for full details).

Equations (4-9), (4-11), (4-12) and (4-13) then become
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- a factor n or a 2 has been deleted as convenient

- respectively

j 21g] (Mv) + xg 11 (avv) + x2g12(avv)- v(k10 + k11xl k 1 2x 2 )

- (C10  i + c12x2) 0 (4-20)

v2 g2 0 (a,vv) + xg 21 (a,vv) + x2g2 2 (a,vv)} - v(k20 + k2 1xI + k2 2 x2 )

- c20 - c2 1xI + c2 2 x2) 0 (4-21)

V2 g30 (,vv) + x g3 1 (a,vv) -x 2 93 2 (a,vv)} -v(k 30 +k 3 2x 2) + (c 30 +c 3 1x) 0 (4-22)

V 2{g40 (vv) + xg 41 (t,vv) -x 2g 42 (a,vv)} -v(k40 +k 4 1x1 )- (c40 +c42x2) 0 .(4-23)

The procedure that can be followed will then be similar to that just suggested in the case

of aerodynamic (and not structural) nonlinearity. Values of a and vv assumed; the

eigenvalue value problem posed by three* of the above four equations is solved for V 2

xI and x2 ; the solution is substituted in the remaining equation; and the process

is repeated with other assumed values of a and vv until the locus of critical condi-

tion is found.

4.1 The matrices F( q ) etc

No difficulty should be encountered in evaluating the matrices whose elements are

defined by equations (4-10) if analytical expressions are known for the column vectors

f(q,vq') and g(q,vvq'). There may, however, be cases when all that is available are

numerical values of the vectors at instances during a specified motion. For example

this most likely will be the case for f as given by nonlinear transonic flow calcula-

tions. At first sight one may imagine in such a case that we are left with an almost

overwhelming problem.

However, let us first note that what is required in equations(4-9) and (4-11) to

(4-13) is not the two square matrices F(q )0 and F0
q ') in isolation but the two

column vectors

a COS - F(q'), sin aq (4-24)

. and

( ) sin T + F 0 cos - - (4-25) PI
' 2%

* Stability considerations (of section 4.1) suggest that it may be m st instructive to
take the last three - (4-21) to (4-23). A solution which gives v? real and positive
(and hence and x2 real) is required.
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where p0 (T) = p(O,T) (4-26)

Thus by evaluating f(q,vq') for q = ap0 ' and for one or two adjacent q caused by

small variationsin zI and z2 , one should be able to evaluate the required vectors.

4.2 Stability of limit cycles

When the function X(a,v,v,x) (equation (2-5)) is positive*, it means that energy

has to be supplied to the system to maintain the assumed motion. Our proposed solution

procedure determines a curve, in say the (a,v) plane, where X = 0 ; and also provides

values of X at other points in this plane. If X is negative above this critical

curve, ie when a is increased by 6a , or positive below the curve, then we can

certainly say that the limit cycles corresponding to points on the curve are unstable

for they are unstable with respect to perturbations in a . We cannot, however, say

with absolute certainty that the limit cycles are stable if the contrary is true,

that is if X is positive above and negative below the critical curve. This is

because the motion may be unstable with respect to other perturbations (cf Ref 1).

However, in practice, one would expect the signs of X , adjacent to the critical curve

X - 0 , to be a good enough guide to the stability or otherwise of the limit cycles.

If there is a stable limit cycle then it means that we can have what is usually known

as limited amplitude flutter; while if there is just an unstable limit cycle then

catastrophic (diverging to infinity) flutter will be possible when the system undergoes

a big enough disturbance.

5 CONCLUDING REMARKS

The question as to whether procedures for determining limit cycles, such as

those described in this Memorandum, are more attractive than other approaches will depend

largely on the number of parameters necessary in the description of the limit cycle.

If, as in the detailed development of section 4, one can get away with two parameters

xI and x2 , in addition to the amplitude and frequency parameters (a and v) (of equation

(4-2)), then it may well prove the more economical method. Baldock's way5 '6 of con-

densing a linear flutter system to an equivalent binary certainly provides a promising

guide to the choice of parameters in such a case.

Go

* Or, equivalently, the left-hand side is greater than the right-hand side in
equations (3-4) or (3-5) or (4-9), or the left-hand side of (4-20) is negative.
The energy supplied is also zero in the trivial case a = 0 (of equation (2-4)).
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Table I

NOTATION USED IN EQUATIONS (4-20) TO (4-23)

cl ,%al C " 2n Ca$ , ff 2 Ca
C ET C _ n T 2n T CaC 2Ec

2 2Ca0  + -0  0C0 0 c21 ffi - + 'Cso c31  2 Ca-in0Cs

C3 0 = Tc 0 , C3 1 " TC S

c40  , c42 Tcs

k 0  EB n 0 Bn 0  k ff 2 Bs k12 s= f f0Bsn 0 ~~0' kil IT =B - n0IT

k =cTc noBno T Bsno, k2C T + I T B

k 30 T TBn0 , k 32 = 0T B6

k40 TB&o P k41 = *TBO

2w
gc(a'vv) T sin T + n T gO (,VV,T)dT - T (ou o +,o)

* 2w

g1 (a,vv) (vv) 2  sin T go(,vVT) + & sin T + T0 COS T

sin T g COST - G (aVVT)Oa sin T dT ET
0 ~vv ;s

27

g (,vv) 0(a,VV,T) -T0 sin T + n TCOS x
12 ar (vv) 2 f [( 0 2T

XJGq)(a,VVr)ea sin T + G (a,vv,T)Oa coS T -- v D D

2 ? J JT I T nT~
920('v - ai2 2 1 (TOsin T + n0COS T) g 0 (O,VVT)TdT 2 ~ ;0 EEO - n~o

n (vv) 0 27r(vv) 00

_l (CT + nD 0T I T O0) + _ -(CATo)T
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Table I (concluded)

2

g(c,vv) - 2 2i fT, g (a,VV,T) + T sin T +n T CosB

0) 

((vv)2

x {G6)(aVVT) S T -G q (aVV,)oa osi T TdT

I TEO T + LnDT +-.1AE

+ lEe 2 v lD0 1.TD9 1.oAO

wr (vv) 2 v Ir

g31(a,vv) 2 2 Co T G (a,Vv ,T) - sin +Tn0 Cos oT)
22a (vv) 2

+ - *TE - ,TA,
(vv)2

Sg32(a,v) (a,VV,) sin T CO G + q') (c,vv, ) Cos T d'e+ T

i i(vv) 2

0 20

+ 1_ T E T IT Te

ilg 4 0 (n,vv) = 2e fgo(n,vv,r) sin t dt oTEo -- + Ano2 0 (v) (vv) 2  0 S Vv

g42 (a,vv) l OT G )(,v,T) .2 + _ q')( vv T s n 0 o AE

30 ir(vv) 2  S (vv

.b+ 1 20OTEO " OT A e

(vv)

I T 2yE6(q' 2
(aS)G (,VT)snTCST+ Q..)CS Te+L D932 I v)2 f 100v
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LIST OF SYMBOLS

A inertia matrix

B linear aerodynamic damping matrix

C linear aerodynamic stiffness matrix

D linear structural damping matrix

E linear structural stiffness matrix

F 0)(a,V) square matrix whose jth column is (f/aqj)qap 0

F(q') (a,V,T)- square matrix whose jth column is (af/q!)

G (q) (,VV,T) square matrix whose jth column is (ag/aqj)

Gq'(aLVV, ) square matrix whose jth column is (ag/aq!)

Cl, c2  see equations (3-1I) and (3-12)

c. . constant coefficients in equations (4-20) to (4-23) (no aerodynamic
13 nonlinearity, cf Table 1)

F f(qvq') column vector of nonlinear aerodynamic terms

f0(a,VT) see equation (4-7)

g(qvvq') column vector of nonlinear structural terms

g0 (Ca,vv,T) see equation (4-8)

gi(a,vv) see equations (3-13) and (3-14)

gi (a,vv) coefficients in equations (4-20) to (4-23) (no aerodynamic nonlinearity,
of Table 1)

k1l, k2  see equations (3-9) and (3-10)

k.. constant coefficients in equations (4-20) to (4-23) (no aerodynamic
'.3 nonlinearity, of Table 1)

p(x,r) mode of trial solution for q(T)

p0(T)= p(O,T)

q(T) column vector of generalised coordinates

qi(T) ith element of q(T)

t time

v ratio of airspeed to a reference speed

v flutter speed parameter of linear problem (of equation (3-2))

x see equation (2-10)

x1, x2,... parameters in p(x,T) (see also equations (4-2) to (4-4))

y(qq',q") left hand side of equation (2-1)

z19 z2  coefficients in flutter mode of linear system (equation (4-i))

a amplitude parameter

yij campitun prameter in equations (4-14) to (4-17) (no structural

dampin or .nonlinearity)

coum veto component of p(X,'r) (see equations (3-1) or (4-4)) O
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LIST OF SYMBOLS (concluded)

6 column vector in flutter mode of linear system (equation (4-1))

coefficient in van der Pol equation

ijc(a,v) coefficient in equations (4-14) to (4-17) (no structural damping or
nonlinearity)

v frequency parameter

V I flutter frequency parameter of linear problem (of equation (3-2)

&column vector component of p(xT) (see equation (3-1) or (4-3))
0= (Ox)=

&0 Wx=0

T Wt

* column vector in flutter mode of linear system (equation (4-I))

X(a,v,v,x) see equation (2-5)

W circular frequency of limit cycle

Dressings

indicates differentiation with respect toT

a and s subscripts indicate skew-symmetric and symmetric part of a square
matrix respectively

I!
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